Innovation for Our Energy Future

Fermentative and Electrohydrogenic Approaches to Hydrogen Production

2008 DOE Hydrogen Program Review

Pin-Ching Maness, NREL
Bruce Logan, Penn State Univ. (Subcontract)
June 11, 2008

Project ID PDP27

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: FY05
- Not funded in FY06
- Project end date: continuing
- Percent complete: N/A

Budget

- Total project funding
 - \$1,180K
- Funding received in FY07: \$500K (including \$130K subcontract to Penn State)
- Funding for FY08: \$680

Barriers

- Production Barriers addressed
 - Barrier AR: H₂ molar yield
 - Barrier AT: glucose feedstock cost

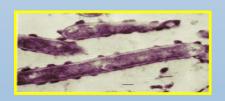
Partners

 Prof. Bruce Logan, Penn State Univ. (subcontract)

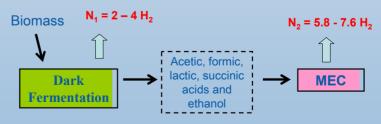
Objectives

- The long-term objective is to develop <u>direct</u> fermentation technologies to convert renewable lignocellulosic biomass resources to H₂
- The near-term objectives in FY08 are to
 - Optimize bioreactor performance for the cellulose-degrading bacterium Clostridium thermocellum
 - Identify key metabolic pathways to guide genetic engineering to improve H₂ molar yield
 - Integrate microbial electrolysis cell (MEC) (formerly BEAMR: bio-electrochemically assisted microbial reactor) process to improve H₂ molar yield

Milestones



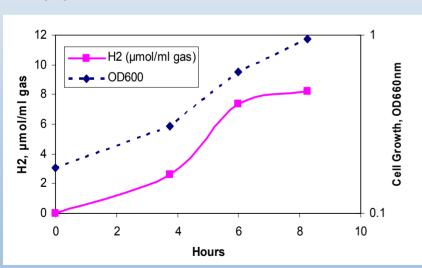
Month/year	Milestones
September - 07	Optimize growth conditions for <i>Clostridium</i> thermocellum 27405 (FY2007 project start date is April 2007) (NREL)
April - 08	Test H ₂ production in a microbial electrolysis cells (MEC) using synthetic solution having the same composition as that produced from the NREL lignocellulose fermentation system (PSU)
June – 08	Test effects of metabolic pathway inhibitors on H ₂ production (NREL)
August - 08	Determine H ₂ molar yield and mass balance of fermentation using pretreated biomass as the feedstock (NREL)


Approaches

- Task 1:Bioreactor Performance
 - Optimize cellulose-degrading bacterium Clostridium thermocellum 27405 to lower feedstock cost by converting cellulose to H₂ directly
- Task 2: Metabolic Engineering
 - Use genetic tools to improve the metabolic pathway of C.
 thermocellum (genome sequenced) to increase H₂ yield
- Task 3: Microbial Electrolysis Cell (Penn State).
 - Develop microbial electrolysis cells to produce H₂, using waste generated from the NREL fermentation system

Clostridium thermocellum

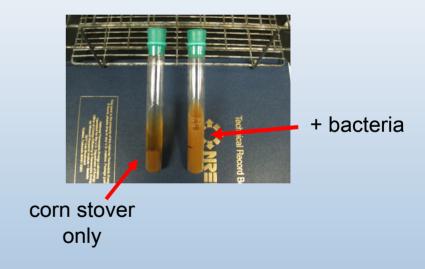
 $> N_1 + N_2 = 7.8 - 11.6 \text{ mol H}_2 \text{ per mol sugar}$



Optimized Growth and H₂ Production

 Task 1: Growth of C. thermocellum was optimized and it displayed a cell-doubling time of 2 hrs at 55 °C, while converting various cellulosic substrates to H₂.

(A) cellobiose


(B) H₂ from Avicel Cellulose 10 8 6 4 2 0 0 20 40 60 80 Hours

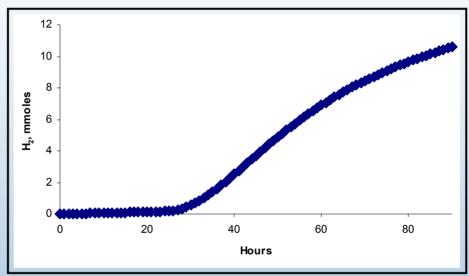
Optimized Growth and H₂ Production

• <u>Task 1:</u> Clostridium thermocellum converting various cellulosic substrates to H₂.

Substrate*	μmol H ₂ /ml culture/day
Corn stover	23.3
Avicel cellulose	15.7
Cellobiose	11.4
Filter paper	4.2

➤ Exceeding Milestone (09/07) in optimizing cell growth and cellulose utilization

^{*}Added at 0.5% (w/v) except biomass at 1.4%

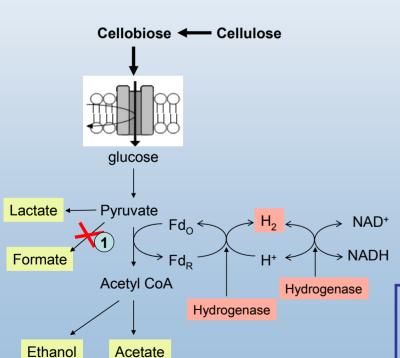

H₂ from Corn Stover in Bioreactor

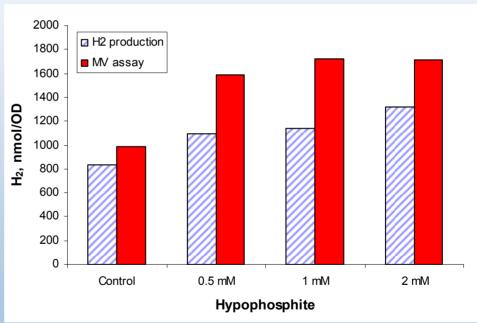
Task 1: Bioreactor performance using corn stover

- pH, temperature (50 °C), and pressure controls
- Continuous on-line measurements of H₂ and CO₂

Toward meeting Milestone (8/08)

- Corn stover lignocellulose prepared by acid hydrolysis in 1.1% H₂SO₄
- 0.14% (w/v) corn stover was completely consumed in the end of fermentation
- Metabolite profiles and H₂ molar yield determinations underway

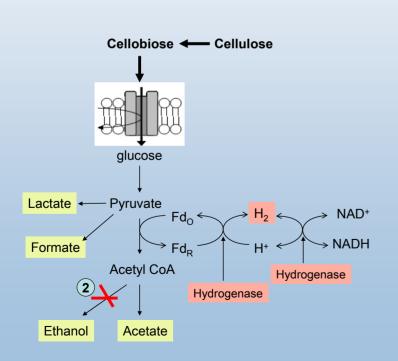


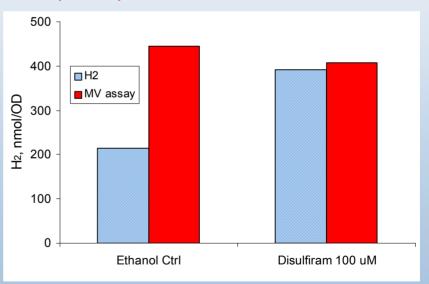

Increased H₂ Yield

<u>Task 2:</u> we studied effects of pathway inhibitors on H₂ production. The outcome will guide the most effective genetic engineering effort.

Blocking the pyruvate-to-formate competing pathway by hypophosphite

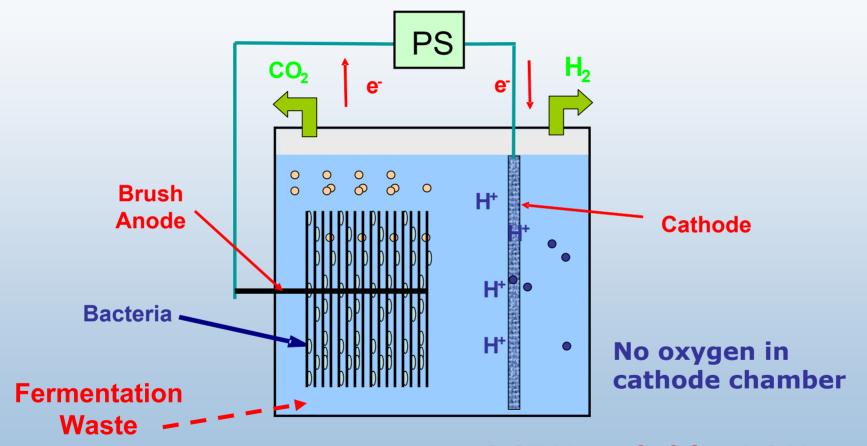
increased H₂ production.




- Increased H₂ yield by 31% to 58%
- Increased hydrogenase activity by 61-74%

Increased H₂ Yield

- Cont'd Task 2: Blocking the ethanol competing pathway by disulfiram increased overall H₂ production
- We demonstrated that blocking competing pathways is effective in increasing H₂ yield – Milestone (6/08)



- Increased H₂ yield by 81%
- No change in hydrogenase activity

Task 3 Approach:

Microbial Electrolysis Cell (MEC)

Bruce Logan, Penn State University

0.25 V needed (vs 1.8 V for water electrolysis)

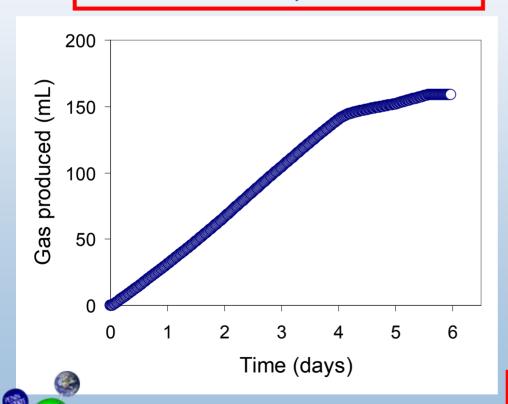
Ref: Liu, Grot and Logan, Environ. Sci. Technol. (2005)

anode

Task 3 Approach:

DOE Hydrogen Program

Reactor and Solutions


MEC used in tests (also called BEAMR)

- Reactor
 - Single chamber
 - Brush anode, carbon cathode with Pt
- Synthetic solution containing fermentation end products:
 - Substrates:
 - 26 mM acetic acid
 - 5.6 mM succinic acid
 - 1.8 mM lactic acid
 - 0.6 mM formic acid
 - 14 mM ethanol
 - 50 mM PBS + vitamins + minerals

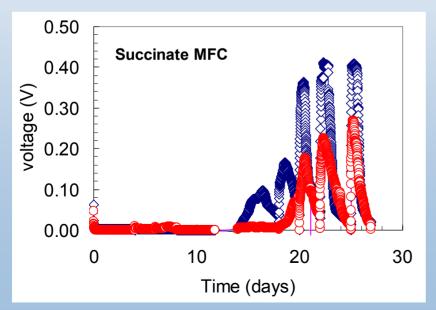
H₂ from Synthetic Fermentation End Products

Task 3: Successfully produced H₂ gas from synthetic solution of fermentation end products

- Gas production
 Total= 159 mL
 H₂= 106 mL
- Conversion efficiency= 30 mL H₂/gCOD*
- COD removal=93% (3.6 g-COD)
- Time for cycle: 6 to 7 days
- Problems:
 - Methane gas production
 - Increased CH₄, decreased H₂

*COD: chemical O2 demand

Meeting Milestone (4/08)


Technical Accomplishments: Adapted Culture in MEC

 Task 3: Developed acclimated cultures to individual compounds to improve yield and efficiency

To increase H₂ yields, reduce methane production, reactors are being acclimated to individual compounds.

(Duplicate reactors shown below)

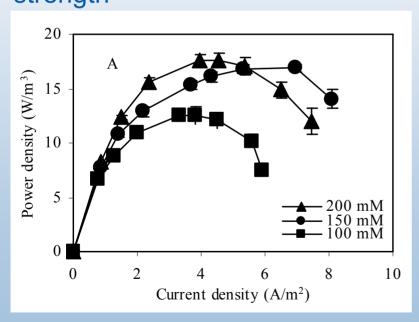
- Reactors first run in microbial fuel cell mode (MFC); and switch to MEC mode later.
- Successful acclimation, with maximum voltage of:

Acetate: 556 mV

Lactate: 543 mV

Ethanol: 523 mV

Succinate: 412 mV


Formate: 228mV

Technical Accomplishments: Testing Xylose Feedstock

<u>Task 3:</u> Examined electricity production using **xylose** (major sugar of hemicellulose) at different concentrations and solution ionic strength

- Work primarily supported by visiting researcher at Penn State
- Provided an opportunity to examine implications of bioenergy production using an alternative feedstock, and effects of scale-up
- Produced 13 W/m³ (673 mW/m²) at Coulombic efficiencies of 61-85% in a medium-scale reactor (0.8 L) at 100 mM ionic strength, with slightly higher power in other solutions.

These results will be useful in considering scale up of MEC systems using hemicellulose

Future Work: Task 1 (NREL)

- Optimize bioreactor performance for scale-up fermentation of corn stover
- Determine H₂ molar yield, carbon mass balance, and profiles of metabolites (milestone 8/08)
- Provide above fermentation waste products for Penn State MEC process for additional H₂ production
- Test other pretreated feedstock, i. e., switch grass
- Develop continuous (vs batch) fermentation with cellulosic substrates

Future Work: Task 2 (NREL)

- Test other metabolic pathway inhibitors in improving H₂ yield (Milestone 6/08)
- Combine inhibitors for cumulative improvement
- Optimize growth of C. thermocellum on agar plates
- Develop genetic methods for pathway engineering
 - collaborate with Univ. Manitoba to accelerate progress and leverage DOE funding)
- Test scale-up fermentation using metabolic pathway inhibitors for improving H₂ molar yield

- Acclimate cultures to all components in the synthetic fermentation product in MEC to improve yield and efficiency
- Test adapted culture using all components
- Use actual biomass fermentation waste products provided by NREL

Summary

- Growth conditions have been optimized for Clostridium thermocellum using various cellulosic substrates (cellulose, corn stover)
- Identified key metabolic pathways to block to improve H₂ yield
 - Improved H₂ yield up to 81%
 - Provide a knowledge-based approach to guide metabolic pathway engineering
- H₂ has been successfully produced in MEC using synthetic fermentation waste products